general cryptosystem - traduction vers russe
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

general cryptosystem - traduction vers russe

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

general cryptosystem      
криптосистема общего вида; обобщенная криптосистема криптосистема общего вида; обобщенная криптосистема
general         
OFFICER OF HIGH RANK IN THE ARMIES, AND IN SOME NATIONS' AIR FORCES, SPACE FORCES, OR MARINES
Generals; High General; Full General; General; General (rank); General (military); General (military rank); General officers; Generale; General Officer; General of the Air; Generaal; Gen'l; General Officers; Generalship; Full general; Arteshbod; Generalate (office); High-ranking officer
1) главный
2) обычный
3) общий
generalship         
OFFICER OF HIGH RANK IN THE ARMIES, AND IN SOME NATIONS' AIR FORCES, SPACE FORCES, OR MARINES
Generals; High General; Full General; General; General (rank); General (military); General (military rank); General officers; Generale; General Officer; General of the Air; Generaal; Gen'l; General Officers; Generalship; Full general; Arteshbod; Generalate (office); High-ranking officer
Generals-in-Chief see General-in-Chief

Définition

Дженерал моторс

Wikipédia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

Traduction de &#39general cryptosystem&#39 en Russe